Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 330
Filtrar
1.
Mol Neurobiol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581538

RESUMO

Spinal cord injury (SCI) constitutes a significant clinical challenge, and there is extensive research focused on identifying molecular activities that can facilitate the repair of spinal cord injuries. Mammalian sterile 20-like kinase 2 (MST2), a core component of the Hippo signaling pathway, plays a key role in apoptosis and cell growth. However, its role in neurite outgrowth after spinal cord injury remains unknown. Through comprehensive in vitro and in vivo experiments, we demonstrated that MST2, predominantly expressed in neurons, actively participated in the natural development of the CNS. Post-SCI, MST2 expression significantly increased, indicating its activation and potential role in the early stages of neural recovery. Detailed analyses showed that MST2 knockdown impaired neurite outgrowth and motor function recovery, whereas MST2 overexpression led to the opposite effects, underscoring MST2's neuroprotective role in enhancing neural repair. Further, we elucidated the mechanism underlying MST2's action, revealing its interaction with AKT and positive regulation of AKT activity, a well-established promoter of neurite outgrowth. Notably, MST2's promotion of neurite outgrowth and motor functional recovery was diminished by AKT inhibitors, highlighting the dependency of MST2's neuroprotective effects on AKT signaling. In conclusion, our findings affirmed MST2's pivotal role in fostering neuronal neurite outgrowth and facilitating functional recovery after SCI, mediated through its positive modulation of AKT activity. In conclusion, our findings confirmed MST2's crucial role in neural protection, promoting neurite outgrowth and functional recovery after SCI through positive AKT activity modulation. These results position MST2 as a potential therapeutic target for SCI, offering new insights into strategies for enhancing neuroregeneration and functional restoration.

2.
Adv Mater ; : e2312956, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653192

RESUMO

Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. We begin by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then we summarize inter-agent communications and agent-environment communications that contribute to the swarm generation. Furthermore, we review the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, we offer insights into the design and deployment of autonomous synthetic swarms for real-world applications. This article is protected by copyright. All rights reserved.

3.
Soft Matter ; 20(16): 3499-3507, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38595066

RESUMO

Polymeric vesicles are perspective vehicles for fabricating enzymatic nanoreactors towards diverse biomedical and catalytic applications, yet the design of stable and permeable vesicles remains challenging. Herein, we developed polyion complex (PIC) vesicles featuring high stability and a permeable membrane for adequate enzyme loading and activation. Our design relies on co-assembly of an anionic diblock copolymer (PSS96-b-PEO113) with cationic branched poly(ethylenimine) (PEI). The polymer combination endows strong electrostatic interaction between the PSS and PEI building blocks, so their assembly can be implemented at a high salt concentration (500 mM NaCl), under which the charge interaction of the enzyme-polymer is inhibited. This control realizes the successful and safe loading of enzymes associated with the formation of stable PIC vesicles with an intrinsic permeable membrane that is favourable for enhancing enzymatic activity. The control factors for vesicle formation and enzyme loading were investigated, and the general application of loading different enzymes for cascade reaction was validated as well. Our study reveals that proper design and combination of polyelectrolytes is a facile strategy for fabricating stable and permeable polymeric PIC vesicles, which exhibit clear advantages for loading and activating enzymes, consequently boosting their diverse applications as enzymatic nanoreactors.


Assuntos
Polietilenoimina , Polietilenoimina/química , Permeabilidade , Polímeros/química , Polieletrólitos/química
4.
Heliyon ; 10(7): e28677, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586344

RESUMO

Duchenne muscular dystrophy (DMD MIM#310200) is a degenerative muscle disease caused by mutations in the dystrophin gene located on Xp21.2. The clinical features encompass muscle weakness and markedly elevated serum creatine kinase levels. An 8-year-old Chinese boy was diagnosed with Duchenne muscular dystrophy (DMD). Whole exome gene sequencing was conducted and the Sanger method was used to validate sequencing. A deletion (c.5021del) in exon 35 of the dystrophin gene was identified, which was predicted to generate a frameshift mutation and create an early termination codon (p.Leu1674CysfsTer47). It has a pathogenic effect against dystrophin in the muscle cell membrane of the patient. As such, prednisone treatment at a dose of 0.75 mg/kg.d was administered. After one month, a notable reduction in fall frequency was observed. Our new finding will expand the pathogenic mutation spectrum causing DMD.

5.
Int Angiol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38619206

RESUMO

BACKGROUND: The aim of our study was to explore the characteristics of the arterial risk factors and ankle-brachial index (ABI) in patients with lower extremity chronic venous disease (LECVD). METHODS: A total of 2642 subjects were employed in our study. The lifestyle and clinical data were collected. The history of vascular diseases contained coronary artery disease, stroke, hypertension, and diabetes. ABI low than 0.9 was considered as lower extremity artery disease (LEAD). A series of blood indicators were measured. RESULTS: Patients with ABI low than 0.9 belonged to the group of LEAD. Age, smoking, drinking, hypertension, diabetes mellitus, lipid-lowering drug, antidiabetic, total protein, total protein, triglyceride, low-density lipoprotein cholesterol, glycosylated hemoglobin and homocysteine were the common risk factors shared by LEAD and LECVD (P<0.05). The prevalence of LEAD in patients with LECVD was higher than those without LECVD (P<0.05). In Pearson correlation analysis, LECVD was related to LEAD (P<0.05). Before and after adjusted shared factors, as the performance of the logistic regression models, LEAD was an independent risk factor for the prevalence of LECVD (OR=2.937, 95% CI: [1.956, 4.411], P<0.001). CONCLUSIONS: Our study demonstrated that an ABI lower than 0.9 is an independent risk factor for LECVD.

6.
Int J Cancer ; 154(11): 1877-1889, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429857

RESUMO

In recent years, breast cancer (BC) has surpassed lung cancer as the most common malignant tumor worldwide and remains the leading cause of cancer death in women. The etiology of BC usually involves dysregulation of epigenetic mechanisms and aberrant expression of certain non-coding RNAs (ncRNAs). N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, widely exists in ncRNAs to affect its biosynthesis and function, and is an important regulator of tumor-related signaling pathways. Interestingly, ncRNAs can also regulate or target m6A modification, playing a key role in cancer progression. However, the m6A-ncRNAs regulatory network in BC has not been fully elucidated, especially the regulation of m6A modification by ncRNAs. Therefore, in this review, we comprehensively summarize the interaction mechanisms and biological significance of m6A modifications and ncRNAs in BC. Meanwhile, we also focused on the clinical application value of m6A modification in BC diagnosis and prognosis, intending to explore new biomarkers and potential therapeutic targets.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Feminino , Humanos , Neoplasias da Mama/genética , Adenosina/genética , Epigênese Genética , RNA não Traduzido/genética
7.
Heliyon ; 10(3): e24850, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322914

RESUMO

The aim of this study is to comprehensively investigate the prevalence and distribution patterns of three common genetic variants associated with hearing loss (HL) in Chinese neonatal population. Methods: Prior to June 30, 2023, an extensive search and screening process was conducted across multiple literature databases. R software was utilized for conducting meta-analyses, cartography, and correlation analyses. Results: Firstly, our study identified a total of 99 studies meeting the inclusion criteria. Notably, provinces such as Qinghai, Tibet, Jilin, and Heilongjiang lack large-scale genetic screening data for neonatal deafness. Secondly, in Chinese newborns, the carrier frequencies of GJB2 variants (c.235delC, c.299_300delAT) were 1.63 % (95 %CI 1.52 %-1.76 %) and 0.33 % (95 %CI 0.30 %-0.37 %); While SLC26A4 variants (c.919-2A > G, c.2168A > G) exhibited carrier rates of 0.95 % (95 %CI 0.86 %-1.04 %) and 0.17 % (95 %CI 0.15 %-0.19 %); Additionally, Mt 12S rRNA m.1555 A > G variant was found at a rate of 0.24 % (95 % CI 0.22 %-0.26 %). Thirdly, the mutation rate of GJB2 c.235delC was higher in the east of the Heihe-Tengchong line, whereas the mutation rate of Mt 12S rRNA m.1555 A > G variant exhibited the opposite pattern. Forthly, no significant correlation exhibited the opposite pattern of GJB2 variants, but there was a notable correlation among SLC26A4 variants. Lastly, strong regional distribution correlations were evident between mutation sites from different genes, particularly between SLC26A4 (c.919-2A > G and c.2168A > G) and GJB c.299_300delAT. Conclusions: The most prevalent deafness genes among Chinese neonates were GJB2 c.235delC variant, followed by SLC26A4 c.919-2A > G variant. These gene mutation rates exhibit significant regional distribution characteristics. Consequently, it is imperative to enhance genetic screening efforts to reduce the incidence of deafness in high-risk areas.

8.
Gene ; 901: 148162, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224924

RESUMO

Circular RNAs (circRNAs) are a class of stable non-coding RNAs that have emerged as key regulators in human diseases including cancer. This study investigates the role of circRNA_0102913 (circ_0102913) in malignant behavior of colorectal cancer (CRC) cells and the underpinning mechanisms. By analyzing CRC-related GSE197991, GSE159669, and GSE223001 datasets, we obtained circ_0102913 as an aberrantly upregulated circRNA in CRC. Increased circ_0102913 expression was detected in CRC tissues and cells. By querying multiple bioinformatics systems (circBank, Circular RNA Interactome, TargetScan, miRDIP, miRwalk, and miRDB), we identified microRNA-571 (miR-571) as a target of circ_0102913 and Rac family small GTPase 2 (RAC2) mRNA as a target of miR-571. Biotinylated-RNA pull-down and/or luciferase assays showed that circ_0102913 bound to miR-571 to restore the expression of RAC2 mRNA. Circ_0102913 silencing or miR-571 overexpression repressed proliferation, migration and invasion, and in vivo tumorigenesis abilities of CRC cells. However, the malignant properties of cells were restored by RAC2 overexpression. The increased circ_0102913 expression in CRC cells was attributed to increased 5-methylcytosine (m5C) modification levels. Silencing of NOP2/Sun RNA methyltransferase 5 reduced the m5C level and therefore reduced stability and expression of circ_0102913 expression in CRC cells. In conclusion, this study demonstrates that m5C-mediated upregulation of circ_0102913 augments malignant properties of CRC cells through a miR-571/RAC2 axis.


Assuntos
Ataxina-3 , Neoplasias Colorretais , MicroRNAs , RNA Circular , Humanos , 5-Metilcitosina , Proliferação de Células , Neoplasias Colorretais/genética , MicroRNAs/genética , RNA Circular/metabolismo , RNA Mensageiro , Regulação para Cima , Ataxina-3/genética
9.
Glob Chang Biol ; 30(1): e17115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273576

RESUMO

Crop residue-derived carbon (C) emissions and priming effects (PE) in cropland soils can influence the global C cycle. However, their corresponding generality, driving factors, and responses to nitrogen (N) inputs are poorly understood. As a result, the total C emissions and net C balance also remain mysterious. To address the above knowledge gaps, a meta-analysis of 1123 observations, taken from 51 studies world-wide, has been completed. The results showed that within 360 days, emission ratios of crop residues C (ER) ranged from 0.22% to 61.80%, and crop residues generally induced positive PE (+71.76%). Comparatively, the contribution of crop residue-derived C emissions (52.82%) to total C emissions was generally higher than that of PE (12.08%), emphasizing the importance of reducing ER. The ER and PE differed among crop types, and both were low in the case of rice, which was attributed to its saturated water conditions. The ER and PE also varied with soil properties, as PE decreased with increasing C addition ratio in soils where soil organic carbon (SOC) was less than 10‰; in contrast, the opposite phenomenon was observed in soils with SOC exceeding 10‰. Moreover, N inputs increased ER and PE by 8.31% and 3.78%, respectively, which was predominantly attributed to (NH4 )2 SO4 . The increased PE was verified to be dominated by microbial stoichiometric decomposition. In summary, after incorporating crop residues, the total C emissions and relative net C balance in the cropland soils ranged from 0.03 to 23.47 mg C g-1 soil and 0.21 to 0.97 mg C g-1 residue-C g-1 soil, respectively, suggesting a significant impact on C cycle. These results clarify the value of incorporating crop residues into croplands to regulate global SOC dynamics and help to establish while managing site-specific crop return systems that facilitate C sequestration.


Assuntos
Oryza , Solo , Solo/química , Carbono , Nitrogênio/análise , Agricultura/métodos
10.
Adv Sci (Weinh) ; 11(1): e2304480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939288

RESUMO

A major pathological basis for low back pain is intervertebral disk degeneration, which is primarily caused by the degeneration of nucleus pulposus cells due to imbalances in extracellular matrix (ECM) anabolism and catabolism. The phenotype of macrophages in the local immune microenvironment greatly influences the balance of ECM metabolism. Therefore, the control over the macrophage phenotype of the ECM is promising to repair intervertebral disk degeneration. Herein, the preparation of an injectable nanocomposite hydrogel is reported by embedding epigallocatechin-3-gallate-coated hydroxyapatite nanorods in O-carboxymethyl chitosan cross-linked with aldehyde hyaluronic acid that is capable of modulating the phenotype of macrophages. The bioactive components play a primary role in repairing the nucleus pulposus, where the hydroxyapatite nanorods can promote anabolism in the ECM through the nucleopulpogenic differentiation of mesenchymal stem cells. In addition, epigallocatechin-3-gallate can decrease catabolism in the ECM in nucleus pulposus by inducing M2 macrophage polarization, which exists in normal intervertebral disks and can alleviate degeneration. The nanocomposite hydrogel system shows promise for the minimally invasive and effective treatment of intervertebral disk degeneration by controlling anabolism and catabolism in the ECM and inhibiting the IL17 signaling pathway (M1-related pathway) in vitro and in vivo.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/metabolismo , Hidrogéis/farmacologia , Nanogéis , Disco Intervertebral/metabolismo , Hidroxiapatitas
11.
J Environ Manage ; 351: 119930, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160544

RESUMO

Sulfate radical (SO4•-), formed by persulfate (PS) activation during advanced oxidation process (AOPs), can be used for the remediation of organic contaminated soil. However, the role of biochar and microwave (MW) in the activation of PS is not fully understood, especially the corresponding mechanism. Herein, biochar combined with MW was used to activate PS for the remediation of ethyl-parathion (PTH)-polluted soil. The dynamic evolutions of PTH under different conditions, such as biochar content, particle size, reaction temperature, and the degradation mechanisms of PTH were also systematically investigated. Significant enhancement performance on PTH removal was observed after adding biochar, which was 88.78% within 80 min. Meanwhile, activating temperature exhibited remarkable abilities to activate PS for PTH removal. The higher content of adsorption sites in nano-biochar facilitated the removal of PTH. Furthermore, chemical probe tests coupled with quenching experiments confirmed that the decomposition of PS into active species, such as SO4•-, •OH, O2•- and 1O2, contributed to the removal of PTH in biochar combined with MW system, which could oxidize PTH into oxidative products, including paraoxon, 4-ethylphenol, and hydroquinone. The results of this study provide valuable insights into the synergistic effects of biochar and MW in the PS activation, which is helpful for the potential application of biochar materials combined with MW-activated PS in the remediation of pesticide-polluted soils.


Assuntos
Paration , Poluentes Químicos da Água , Solo , Micro-Ondas , Poluição Ambiental , Carvão Vegetal/química , Oxirredução , Poluentes Químicos da Água/química
12.
Heliyon ; 10(1): e23439, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148824

RESUMO

Objective: Peripheral blood routine parameters (PBRPs) are simple and easily acquired markers to identify ulcerative colitis (UC) and Crohn's disease (CD) and reveal the severity, whereas the diagnostic performance of individual PBRP is limited. We, therefore used four machine learning (ML) models to evaluate the diagnostic and predictive values of PBRPs for UC and CD. Methods: A retrospective study was conducted by collecting the PBRPs of 414 inflammatory bowel disease (IBD) patients, 423 healthy controls (HCs), and 344 non-IBD intestinal diseases (non-IBD) patients. We used approximately 70 % of the PBRPs data from both patients and HCs for training, 30 % for testing, and another group for external verification. The area under the receiver operating characteristic curve (AUC) was used to evaluate the diagnosis and prediction performance of these four ML models. Results: Multi-layer perceptron artificial neural network model (MLP-ANN) yielded the highest diagnostic performance than the other three models in six subgroups in the training set, which is helpful for discriminating IBD and HCs, UC and CD, active CD and remissive CD, active UC and remissive UC, non-IBD and HCs, and IBD and non-IBD with the AUC of 1.00, 0.988, 0.942, 1.00, 0.986, and 0.97 in the testing set, as well as the AUC of 1.00, 1.00, 0.773, 0.904, 1.00 and 0.992 in the external validation set. Conclusion: PBRPs-based MLP-ANN model exhibited good performance in discriminating between UC and CD and revealing the disease activity; however, a larger sample size and more models need to be considered for further research.

13.
Mol Cancer ; 22(1): 198, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38053093

RESUMO

Tumor angiogenesis plays vital roles in the growth and metastasis of cancer. RNA methylation is one of the most common modifications and is widely observed in eukaryotes and prokaryotes. Accumulating studies have revealed that RNA methylation affects the occurrence and development of various tumors. In recent years, RNA methylation has been shown to play an important role in regulating tumor angiogenesis. In this review, we mainly elucidate the mechanisms and functions of RNA methylation on angiogenesis and progression in several cancers. We then shed light on the role of RNA methylation-associated factors and pathways in tumor angiogenesis. Finally, we describe the role of RNA methylation as potential biomarker and novel therapeutic target.


Assuntos
Neoplasias , Humanos , Metilação , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , RNA/genética
14.
Mikrochim Acta ; 191(1): 29, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095724

RESUMO

A novel nucleic acid aptamer nanoprobes-mediated hairpin allosteric and aptamer-assisted CRISPR system for detection of Streptococcus pneumoniae and Staphylococcus aureus is presented. In this fluorescence assay system, utilizing the hairpin allosteric effect caused by the aptamer binding to the target bacteria, the detection of S. pneumoniae is first achieved through changes in fluorescence due to FRET. Subsequently, a Cas12a protein mixture is added to detect S. aureus. The amplified output signal is triggered by two methods to ensure the sensitivity of the method: the synergistic FRET effect is achieved by the assembly of multi-aptamer through the conjugation of streptavidin-biotin, and the trans-cleavage function of CRISPR/Cas 12a. Under the optimized conditions, the proposed hairpin allosteric aptasensor could achieve high sensitivity (a detection limit of 135 cfu/mL) and broad-concentration quantification (dynamic range of 103-107 cfu/mL) of S. pneumoniae. The aptamer-assisted CRISPR system for S. aureus detection showed good linearity (R2 = 0.996) in the concentration range 102-108 cfu/mL, with a detection limit of 39 cfu/mL. No cross-reactivity with other foodborne pathogenic bacteria was observed in both systems. Taking only 55 min, this method of multiple pathogen detection proved to be promising.


Assuntos
Aptâmeros de Nucleotídeos , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus/genética , Aptâmeros de Nucleotídeos/genética , Streptococcus pneumoniae/genética , Bactérias
15.
Mol Cancer ; 22(1): 203, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087360

RESUMO

Tumor immunotherapy has transformed neoplastic disease management, yet low response rates and immune complications persist as major challenges. Extracellular vesicles including exosomes have emerged as therapeutic agents actively involved in a diverse range of pathological conditions. Mounting evidence suggests that alterations in the quantity and composition of extracellular vesicles (EVs) contribute to the remodeling of the immune-suppressive tumor microenvironment (TME), thereby influencing the efficacy of immunotherapy. This revelation has sparked clinical interest in utilizing EVs for immune sensitization. In this perspective article, we present a comprehensive overview of the origins, generation, and interplay among various components of EVs within the TME. Furthermore, we discuss the pivotal role of EVs in reshaping the TME during tumorigenesis and their specific cargo, such as PD-1 and non-coding RNA, which influence the phenotypes of critical immune cells within the TME. Additionally, we summarize the applications of EVs in different anti-tumor therapies, the latest advancements in engineering EVs for cancer immunotherapy, and the challenges encountered in clinical translation. In light of these findings, we advocate for a broader understanding of the impact of EVs on the TME, as this will unveil overlooked therapeutic vulnerabilities and potentially enhance the efficacy of existing cancer immunotherapies.


Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patologia , Vesículas Extracelulares/genética , Exossomos/patologia , Comunicação Celular , Imunoterapia , Microambiente Tumoral
16.
Commun Biol ; 6(1): 1251, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081906

RESUMO

Osteoporosis is a systemic metabolic bone disorder for which inflammatory cytokines play an important role. To develop new osteoporosis treatments, strategies for improving the microenvironment for osteoblast and osteoclast balance are needed. Tumor necrosis factor-α (TNF-α) plays an important role in the initiation and development of osteoporosis. Atsttrin is an engineered protein derived from the growth factor, progranulin (PGRN). The present study investigates whether Atsttrin affects osteoclast formation and osteoblast formation. Here we show Atsttrin inhibits TNF-α-induced osteoclastogenesis and inflammation. Further mechanistic investigation indicates Atsttrin inhibits TNF-α-induced osteoclastogenesis through the TNFR1 signaling pathway. Moreover, Atsttrin rescues TNF-α-mediated inhibition of osteoblastogenesis via the TNFR1 pathway. Importantly, the present study indicates that while Atsttrin cannot directly induce osteoblastogenesis, it can significantly enhance osteoblastogenesis through TNFR2-Akt-Erk1/2 signaling. These results suggest that Atsttrin treatment could potentially be a strategy for maintaining proper bone homeostasis by regulating the osteoclast/osteoblast balance. Additionally, these results provide new insights for other bone metabolism-related diseases.


Assuntos
Osteogênese , Osteoporose , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Progranulinas
17.
Environ Sci Technol ; 57(48): 20238-20248, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976412

RESUMO

The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.


Assuntos
Carvão Vegetal , Solo , Radicais Livres/química , Carvão Vegetal/química , Bactérias
18.
Dev Cell ; 58(23): 2684-2699.e6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37944525

RESUMO

CAR-like membrane protein (CLMP) is a tight junction-associated protein whose mutation is associated with congenital short bowel syndrome (CSBS), but its functions in colorectal cancer (CRC) remain unknown. Here, we demonstrate that CLMP is rarely mutated but significantly decreased in CRC patients, and its deficiency accelerates CRC tumorigenesis, growth, and resistance to all-trans retinoic acid (ATRA). Mechanistically, CLMP recruits ß-catenin to cell membrane, independent of cadherin proteins. CLMP-mediated ß-catenin translocation inactivates Wnt(Wingless and INT-1)/ß-catenin signaling, thereby suppressing CRC tumorigenesis and growth in ApcMin/+, azoxymethane/dextran sodium sulfate (AOM/DSS), and orthotopic CRC mouse models. As a direct target of Wnt/ß-catenin, cytochrome P450 hydroxylase A1 (CYP26A1)-an enzyme that degrades ATRA to a less bioactive retinoid-is upregulated by CLMP deficiency, resulting in ATRA-resistant CRC that can be reversed by administering CYP26A1 inhibitor. Collectively, our data identify the anti-CRC role of CLMP and suggest that CYP26A1 inhibitor enable to boost ATRA's therapeutic efficiency.


Assuntos
Neoplasias Colorretais , beta Catenina , Camundongos , Animais , Humanos , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , beta Catenina/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Transformação Celular Neoplásica , Carcinogênese , Neoplasias Colorretais/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral
19.
Diabetes Metab Syndr Obes ; 16: 3727-3737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029000

RESUMO

Introduction: The prevalence of diabetic foot ulcers (DFUs) is increasing, leading to a huge financial burden and human suffering. Furthermore, antibiotic resistance is an urgent problem in the realm of clinical practice. Antimicrobial peptides are an effective and feasible strategy for combating infections caused by drug-resistant bacteria. Therefore, we investigated the in vitro antimicrobial ability of the lipopeptide surfactin, either alone or in combination with conventional antibiotics, against the standard and clinical strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), isolated from patients with DFUs. Methods: The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of surfactin on the selected strains were evaluated by a microbroth dilution technique. The growth curves of the selected strains with and without surfactin were measured, and transmission electron microscopy was used to observe the structure of surfactin-treated bacterial cells. The biofilm inhibitory abilities of surfactin were assessed by crystal violet staining. The antimicrobial interactions between surfactin and conventional antibiotics were established using a checkerboard assay, as well as determining the mutant prevention concentration. The inhibitory effect of surfactin on penicillinase was tested by iodometry. Results: The MIC and MBC values of surfactin ranged from 512 to 1024 µg/mL and 1024 to 2048 µg/mL, respectively. Moreover, surfactin significantly prevented the S. aureus biofilm formation and displayed limited toxicity on human red blood cells. The synergies between surfactin and ampicillin, oxacillin, and tetracycline against S. aureus were revealed. In vitro resistance was not readily produced by surfactin. The action of surfactin may be by disrupting bacterial cell membranes and inhibiting penicillinase. Conclusion: Surfactin appears to be a potential option for the treatment of DFUs infected with MRSA, as it is capable of improving antimicrobial activities and can be used alone or in combination with conventional antibiotics to prevent or postpone the emergence of resistance.

20.
iScience ; 26(12): 108446, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38034359

RESUMO

The disturbance of hepatic lipid metabolism has a strong association with non-alcoholic fatty liver disease (NAFLD) and diabetes. Mof, an acetyltransferase involved in obesity and carbon metabolism, has not been thoroughly examined in its connection to hepatic metabolism. We aimed to explore the impact of Mof on hepatic lipid metabolism. The alteration of Mof expression was found in both obese mice and NAFLD human liver. The genes regulated by Mof were closely associated with lipid metabolism. In normal mice or hepatic cells, the down-regulation or inhibition of Mof resulted in increased lipid accumulation due to decreased PPARα expression. Conversely, in diet-induced obesity (DIO) mice or hepatic cells treated with palmitic acid, the inhibition of Mof led to improved lipid metabolism, attributed to the reduction in p-mTOR/mTOR levels. In summary, Mof exhibited distinct roles in lipid metabolism under different conditions. The inhibition of Mof may hold potential as a therapeutic target for hepatic lipid metabolism disturbances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...